

Produktinformation: Polyoxymethylen (POM)

Version 1.0

POLYOXYMETHYLEN (POM) ist ein teilkristalliner, weitgehend linearer, durch Kettenpolymerisation bzw. Kettencopolymerisation herzustellender Thermoplast. Er zählt zu den typischen technischen Thermoplasten mit guten mechanischen Eigenschaften und hoher Dimensionsstabilität sowie hervorragendem Gleitund Verschleißverhalten. POM gehört daher zu den bevorzugten Konstruktionswerkstoffen, z. B. für Präzisionsteile der Feinwerktechnik. Wichtigste Einsatzgebiete sind die Automobilindustrie und die Elektrotechnik, gefolgt vom allgemeinen Geräte- und Maschinenbau sowie Anwendungen im Konsumgüterbereich.

Eigenschaften:

- hohe Festigkeit, Steifigkeit und Zähigkeit
- hohe Schlagzähigkeit, auch bei niedrigen Temperaturen
- geringe Feuchteaufnahme (bei Sättigung 0,8 %)
- hervorragende Verschleißfestigkeit und Gleiteigenschaften
- hervorragende Zerspanbarkeit
- gute Kriechfestigkeit
- hohe Dimensionsstabilität
- gute Hydrolysebeständigkeit (bis ca. 60°)
- hervorragende Federwirkung / Rückstellelastizität

Anwendungsgebiete:

- Lager
- Kolbenringe
- Dichtungen
- Gleitelemente
- Führungsteile
- Ventilkörper
- Gehäuse
- Spulenkörper
- Pumpenelemente
- Getriebeteile

Produktinformation: Polyoxymethylen (POM)

Version 1.0

		POM
Allgemeine Eigenschaften	Dichte [g/m^3]	1,41
	Feuchtigkeitsaufnahme [%]	0,3
Thermische Eigenschaften	Vicat-Erweichungstemperatur [°C]	165
	Dauergebrauchstemperatur oberer Bereich [°C]	100
	Dauergebrauchstemperatur unterer Bereich [°C]	-40
	Längenausdehnungskoeffizient [K^-1 x 10^4]	1,1
	Wärmeleitfähigkeit bei 20°C [W/(m x K)]	0,3
Mechanische Eigenschaften	Streckspannung bzw. Zugfestigkeit [N/mm^2]	70
	Elastizitätsmodul [N/mm^2]	х
	Schlagzähigkeit [kJ/m^2]	o.Bruch
	Kerbschlagzähigkeit [kJ/mm^2]	9
Elektrische Eigenschaften	Spezifischer Durchgangswiderstand [Ω x cm]	10^15
	Oberflächenwiderstand [Ω]	10^13
	Durchschlagsfestigkeit [kV/mm]	20 (1)

(1) = 0,2 mm Folien (2) = 1 mm Platte (3) = 0,5 mm Folien